Power Calculation for Unit Handling

Calculation of Required Belt Pull (Force)

$F=$	Belt Pull [lbs] $=F=F_{0}+F_{1}+F_{2}+F_{3}$
	The belt pull for each motorized pulley is given in the tables of the range of
	standard
products. Note that available belt pull varies with nominal belt speed for each	
	power.

$P_{\mathrm{n}}=$ Belt weight per linear foot [lb/ft]

$P_{\mathrm{pr}}=$| Weight of rotating parts of the belt conveyor per foot length |
| :--- |
| (carrying and return section) | [lb/tt]

$\mathrm{P}_{\mathrm{m} 1}=$	Weight in lbs of the conveyed product on the load section, for each foot of length of the belt conveyor$[\mathrm{lb} / \mathrm{ft}]$

$\mathrm{P}_{\mathrm{m} 2}=$| Weight in lbs of the conveyed product on the return section, |
| :--- |
| for each foot of length of the belt conveyor |$[\mathrm{lb/ft}]$

$\mathrm{C}_{1}=$ Coefficient of friction between product and belt carrying side
$\mathrm{C}_{2}=$ Coefficient of friction between belt carrying side and slider bed
$\mathrm{C}_{3}=$ Coefficient of friction between return belt and product
$\mathrm{C}_{4}=$ Coefficient of friction between return belt side and slider bed
$\mathrm{L} \quad=$ Length of the conveyor in feet
$\mathrm{H}=$ Height difference in conveyor [ft]
F_{0} to $F_{3}=$ Forces (belt pull) required to move conveyor, as defined below. [lb]
Calculation of Required Belt Pull (Force)

Conveying system

Roller bed conveyor

Slider bed conveyor

Force without load
$F_{0}=0.04 \cdot L \cdot\left(2 P_{n}+P_{p r}\right)$
$F_{1}=0.04 \cdot L \cdot P_{m 1}$

Force to convey materials on incline
$F_{2}=H \cdot P_{m 1}$
$F_{3}=L \cdot P_{m 1} \cdot C_{1}$

$$
F_{0}=1.1 \cdot L \cdot P_{n} \cdot C_{2}
$$

$$
F_{1}=1.1 \cdot L \cdot P_{m 1} \cdot C_{2}
$$

$$
\mathrm{F}_{2}=\mathrm{H} \cdot \mathrm{P}_{\mathrm{m} 1}
$$

$$
F_{3}=L \cdot P_{m 1} \cdot C_{1}
$$

$F_{0}=L \cdot P_{n} \cdot\left(C_{2}+C_{4}\right)$
$F_{1}=L \cdot\left(P_{m 1} \cdot C_{2}+P_{m 2} \cdot C_{4}\right)$
$F_{2}=H \cdot\left(P_{m 1}-P_{m 2}\right)$
$F_{3}=L \cdot\left(P_{m 1} \cdot C_{1}+P_{m 2} \cdot C_{3}\right)$

